
Ned Bingham, Rajit Manohar. “A Systematic Approach for Arbitration Expressions.” IEEE Transactions on Circuits and Systems
I.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

A Systematic Approach for Arbitration Expressions

Ned Bingham and Rajit Manohar
Computer Systems Lab

Yale University
New Haven, CT

edward.bingham@yale.edu and rajit.manohar@yale.edu

Abstract—Greedy arbiters and bundling merges compose
simultaneous events in sequence and parallel respectively.
Previous designs for these problems handle two to three inputs,
and can be composed in a tree topology to handle more. In
addition, they include subtle timing assumptions beyond the QDI
delay model and undocumented timing assumptions in their
arbiter's digital model. In this paper, we discuss two slightly
different digital models that we call the ideal arbiter and buffered
arbiter models, and match them to CMOS implementations.
From CHP specifications of the greedy arbiter and bundling
merge, we derive the Maybe Execute Element. We then show how
it may be systematically composed to produce improved circuits
for both which use a small number of simple gates, strictly abide
by the QDI delay model, and gracefully scale to an arbitrary
number of inputs. Finally, we touch on how this approach may be
used to develop scalable circuit solutions to more sophisticated
arbitration problems.

Keywords—arbitration, asynchronous, quasi-delay insensitive,
qdi, non-deterministic, greedy arbiter, bundling merge

I. INTRODUCTION

In asynchronous logic, the implementation of non-
deterministic choice requires the use of two-input two-output
mutual exclusion elements. A mutual exclusion element has
the following behavior: if one of its inputs is asserted, then the
corresponding output is asserted. However, if both inputs are
asserted, then it asserts only one of the outputs, picking
between the two arbitrarily. Because any circuit that
implements this deceptively simple behavior can exhibit
metastability, careful analog analysis is required to ensure
correct operation [5][6].

These circuits may be divided into two classes:
Synchronizers and Arbiters. Synchronizers handle the general
case in which the asserted inputs may be unstable meaning
that they may be deasserted before its corresponding output
has been asserted [10]. Arbiters handle the more specific case
in which the asserted inputs remain stable. While
synchronizers require fewer environmental restrictions, they
are also a more complex circuit. Furthermore, [17] observed
that it is possible to implement unstable conditions in certain
practical cases by exploiting the assumption that a CMOS
arbiter is in fact a fair circuit when both of its inputs are
asserted. Hence, non-deterministic choices in asynchronous

circuits almost always use standard arbiters as their building
blocks.

One common use for an arbiter involves implementing
mutually exclusive access to a shared resource. Two processes
may request access to a shared resource through a third
arbitrating process commonly referred to as a merge element
or mixer [4]. These elements have further been used in a
variety of mutual exclusion problems. For example, [7] used
the ideas from [8] to communicate pulses within a
neuromorphic system.

The requesting processes, the shared resource, and the
merge element all communicate across channels. Each channel
is a pair of request/acknowledge wires on which two
communicating processes execute a four phase handshake
protocol. If either requesting process asserts its request, the
merge element must first request a lock ensuring the
availability of the shared resource. When the shared resource
acknowledges that request with a grant, the merge element
may dispatch that grant by acknowledging one of the input
requests. Once the requesting process is done and lowers its
request, the merge element unlocks the resource and the entire
cycle begins again. The first half of the handshake is used to
request the resource, and the second half is used to release the
resource.

However, there are other scenarios that require more
complex constraints for access to a shared resource. For
example, two simultaneous requests could be granted
sequentially before unlocking the resource as implemented by
a greedy arbiter. This is used in [2] to optimize tree-arbitrated
exclusive access of many channels to a single bus, in [3] to
arbitrate data received from pixels in an event-driven image
sensor, and in [7] for asynchronous address event
communication in spiking neural networks.

Alternatively, both requests could be granted concurrently
as implemented by a bundling merge in [1]. An example of
this involves using a counter to track the number of in-flight
data items in a variable latency pipeline [28]. When a data
value enters the pipeline, the counter is incremented; when a
value leaves the pipeline, the counter is decremented. If the
increment and decrement requests occur simultaneously, a
bundling merge could combine them and skip both operations.

In the context of spiking neural networks with lossy
communication, a bundling merge could be used to merge
multiple near-simultaneous spikes into a single spike, reducing
communication cost at the expense of fidelity. If you are
designing an event-driven image sensor, events from multiple
pixels in a column could be resolved by a read of the whole
column.

One can imagine more complex arbitration problems that
come from the interaction between these two. For example, a
one-writer two-readers lock could mediate access to a shared
memory with a write-only port and two read-only ports. Or,
the counter in [28] could have a clear signal to execute a
squash across the pipeline. This would have to be mutually
exclusive from the execution of the bundled increment and
decrement requests. These scenarios require generalized
arbitration expressions. While this could be implemented by
composing the greedy arbiter and bundling merge in various
ways, arbitration trees are an inefficient way to solve the
problem for a small to medium number of inputs.

Finally, there are scenarios that cannot be implemented via
composition. Circling back to the counter in [28], suppose
there are two entry and two egress points to the pipeline and
the throughput of increment and decrement requests is above
and beyond what the counter can manage. Then, you want to
bundle any two requests allowing you to either skip the least
significant bit of the counter or skip the counter altogether
thereby reducing the throughput requirement on the counter by
a factor of two.

In this paper, we re-examine the previous implementations
of circuits for the greedy arbiter [2][3] and bundling merge [1],
analyze their timing assumptions, and propose alternative
templates for more robust arbitration expressions. In Section 2,
we discuss the digital model used to analyze the arbiter's
behavior, introducing a distinction between the ideal and
buffered arbiters and their CMOS implementations. Then, in
Section 3, we describe how the application of this model
affects previously designed arbitration circuits. Section 4
proposes a new building block, the maybe execute element, as
the basis for a family of arbitration problems which, in Section
5, is used to construct the bundling merge and greedy arbiter.
In Section 6, we evaluate our design performance and compare
it against the previous designs. Finally, the Appendix gives an
overview of the program and circuit notation used in this
paper.

II. DIGITAL ABSTRACTIONS FOR ARBITRATION

Under the delay insensitive (DI) delay model, a circuit
should operate correctly independent of gate and wire delays.
Correct operation means that the circuit remains stable, non-
interfering, and deadlock-free. An instability, or glitch, can
cause data-loss or lead to interference; interference, or a short,
can cause permanent circuit damage; and deadlock halts the
computation prematurely. To achieve this goal, every
transition must acknowledge every input to its driving gate. A
transition a acknowledges another b if there is a causal
sequence of transitions from a to b that prevents b from
firing until after a has completed.[26]

In order for this model to be Turing Complete, the quasi-

delay insensitive (QDI) delay model makes one exception to
acknowledgement called the Isochronic Fork Assumption. If
there is a wire fork to multiple gates, and one of those gates
does not acknowledge all of the transitions on that wire, then
we assume that the delay from the driver to the non-
acknowledging gate is bounded. In this model it is always safe
to place an inverter before the wire fork. However, because
gates have unbounded delay, placing an inverter after an
isochronic fork and before the non-acknowledging gate can
cause an instability. Because the isochronic fork timing
assumption is easy to guarantee and maintain, real QDI
circuits are robust by construction to temperature variation,
process variation, sizing, noise, etc [24]. For a more detailed
discussion on the QDI model and this timing assumption, see
[26], [16], and [19].

The standard arbiter circuit in Fig. 1 is responsible for
ensuring mutually exclusive outputs given two inputs. In
effect, it determines which of the two input requests arrived
first. Ultimately, it is an analog circuit and must be carefully
verified using analog analysis. Therefore, digital simulators
must explicitly model the arbiter's behavior as a black-box.
The implementations of the bundling merge in [1], and greedy
arbiter in [2] along with many others in the literature assume
an ideal arbiter in which the two outputs are always mutually
exclusive high. This section examines the analog
characteristics of the circuit used to implement an arbiter, and
focuses on appropriate digital abstractions for different arbiter
circuits.

The arbiter in Fig. 1 consists of two stages: an RS latch
followed by an instability filter (also called a metastability
filter). If both a and b transition to Vdd simultaneously,
then the RS-latch can become metastable with both _u and
_v only partially transitioning. At resolution, one of the two
will finish its transition to GND while the other will return to
Vdd , causing a glitch [5]. Therefore, the second stage
implementing an instability filter is required that converts the
glitch caused by the metastable latch into a delay. According
to [13], an NMOS form was first designed by Sutherland in
1976 which later appeared in [9] and [12]. To our knowledge,
the CMOS form we use first appears in [11]. This arbiter will
be expressed in circuit diagrams as a box labelled "Arb".

Fig. 1. Circuit diagram for the standard Arbiter design.

The inverters in the instability filter have unpredictable
delay which depends on their load as determined externally to
the arbiter. Because the downgoing transition of one output as
highlighted blue in Fig. 1 is allowed to happen in parallel with
the upgoing transition of the other as highlighted red, they can
both be high at the same time, violating the blackbox model
from the literature. This has practical implications, for
example in the next section we analyze circuits in the literature
that depend upon the outputs of the arbiter being mutually
exclusive which is something that this circuit does not

guarantee.

In practice, as long as the two outputs u and v drive
similar capacitive loads, then the blackbox digital model holds
true and the two outputs remain mutually exclusive high.
However, should they end up driving different loads, that
model will fail. Suppose u is driving a high capacitive load
and v is not. If a , b , and u are at Vdd and v is at GND ,
then lowering a could cause a transient state in which both u
and v are high. A SPICE simulation in Fig. 2 replicates this
behavior, showing both u and v above the threshold voltage
after 0.09 ns.

Fig. 2. SPICE waveform for the standard Arbiter design.

In effect, the blackbox model used in the literature has an
extra timing assumption. As suggested by [21], we could treat
this arbiter as a blackbox gate in which u and v are treated
as an isochronic fork, and guarantee the output loads in layout.
However, this is an assumption that is often lost when
publishing circuits which use arbiters.

Therefore, a more conservative model for an arbiter that
more rigorously implements the QDI delay model, and
captures the impact of arbitrarily different loads on the
arbiter's outputs would include output buffers that have an
unbounded delay. We refer to this as the buffered arbiter
model. Specifically, the digital abstraction for the arbiter
would artificially ensure that _u and _v are mutually
exclusive low, and model u and v using ordinary inverters.
The buffered arbiter model includes a transient state where u
and v can both be high, consistent with Fig. 2.

Fig. 3. Circuit diagram for the proposed Ideal Arbiter design.

Alternatively, an ideal arbiter that avoids the buffered
arbiter model can be implemented by folding a latch into the
instability filter as shown in Fig. 3. This forces the pull up
networks of the arbiter's outputs to acknowledge the pull down
network of the other, keeping them mutually exclusive.
Importantly, the pass transistor logic implementing the
instability filter has to remain intact. This is why _v is still
the source node for the u↾ rule and _u for the v↾ rule. If
more drive strength is necessary, the output signals may be
further buffered while maintaining the ideal arbiter model by

adding more latches. This arbiter will be expressed in circuit
diagrams as a box labelled "iArb".

Fig. 4. SPICE waveform for the proposed Ideal Arbiter design.

Now in Fig. 4, the upgoing transition on v waits for the
downgoing transition on u to pass the threshold voltage.

III. EXISTING DESIGNS

The buffered and ideal arbiter models ultimately help to
identify the timing assumptions beyond the strict QDI delay
model that might be well-known by the authors of the work,
but unclear to the readers. In subsequent sections, we will
present designs that do not rely upon these timing assumptions
for correct operation, thereby improving their reliability.

A. Bundling Merge
If we apply the buffered arbiter model to the bundling

merge circuit from [1] in Fig. 5, it is possible for the circuit to
go through an entire cycle, asserting and deasserting the grant
request on Sr while uA or uB remains high. This is because
w can be driven low following Sa↾ and therefore can skip
the check for ¬uA ∧ ¬uB . As long as uA or uB continue
to remain high, Sr and Sa will continue to complete full
handshakes, causing Aa or Ba to toggle without Ar and Br
ever switching.

Fig. 5. Opportunistic Merge from [1].

However, the inverter that causes this failure cannot be
removed. If it were, then the decomposition of w and c from
the gate driving Sr would create a second failure mode. After
Ar↾ causes Sr↾ followed by Sa↾ and the request on Ar is
acknowledged, eventually causing uA⇂ , another request can
appear on Br , simultaneously causing uB↾ . This could cause
a glitch on w that can propagate out Sr . The inverter and
AND gate from Sa into w successfully covers this glitch as
long as the application of the atomic complex gate assumption
to the driver of w is valid. This assumption requires the gate
highlighted red in Fig. 5 to behave as if it were a single gate.

Ultimately, this means that the inverter in that gate must
transition before uA⇂ .

We remark that since [1] already assumes a fast local
inverter through their application of the atomic complex gate
assumption to the driver of w , the assumption of fast inverters
in the implementation of the arbiter is likely reasonable in
practice as long as an effort is made to implement that
assumption in layout.

B. Greedy Arbiter
Applying the buffered arbiter model to the greedy arbiter

from [2] in Fig. 6 breaks far more. This is because the
environment is allowed to bypass various stages of the internal
handshake. Suppose a request on Ar has already been given
the grant and Ar is subsequently lowered, but Sr and Se are
still high. Then, as Sr is being lowered, a request on Br can
arrive causing a down-up glitch on Sr .

Fig. 6. Greedy Arbiter from [2].

If Br happens a little later, and Sr subsequently
transitions low, then the request on Br will drive v high
causing a down-up glitch to propagate out Be .

Suppose Br arrives even later and neither of these glitches
happen. This means Sr remains low long enough for Se to
transition high. Then, as Se transitions high, an up-down
glitch could be generated on v since the request on Br has
simultaneously lowered _v .

Finally, as documented in [3], the greedy arbiter found in
[2] does not implement fairness and will revisit the same child
repeatedly while deadlocking the other child.

Fig. 7. Greedy Arbiter from [3].

The greedy arbiter from [3] in Fig. 7 already works under
the buffered arbiter model, but still has other environment-
dependent timing assumptions. Suppose a request arrives on
Ar causing Sr↾ . Then, as Se is lowered, another request
arrives driving Br↾ and causing an up-down glitch on bo ,
then as long as _u has not transitioned low in response to the
request on Ar , the glitch on bo could propagate through the
arbiter and out Be . Alternatively if a request never arrives on
Br , then when Ar is lowered, Sr will be lowered and Se

raised. Then, Se↾ can drive Ae↾ without _u ever
transitioning. So, a new request on Ar could cause an up-
down glitch on _u . If Sr goes up and Se down in response
to this new request, then that glitch will propagate out Ae . It
should be noted that neither of these timing assumptions are
hard to ensure in layout and that the authors of [2] and [3]
made these assumptions intentionally to conserve transistors in
the face of a severe restriction due to their application
requirements.

IV. MAYBE EXECUTE ELEMENT

The behavior of the bundling merge can be succinctly
described with a single selection statement. The selection
statement is ultimately symmetric across the two input
channels, meaning it behaves the same regardless of which
channel request arrives first. Given two channels A and B
using four phase communication protocols and one channel S
using a two phase communication protocol, the bundling
merge is as follows.

∗[[A → S;A;S | B → S;B;S | A∧B → S;(A∥B);S]]

However, the behavioral description of the greedy arbiter
implemented in [3] is quite a bit more complex since it tries to
remain symmetric. Instead of implementing a symmetric
greedy arbiter, we implement an asymmetric one that looks
similar to the bundling merge so that we can build both
circuits with common building blocks.

∗[[A → S;A;S | B → S;B;S | A∧B → S;(A;B);S]]

Now, the grants are always served in the same order
regardless of which request arrives first. This means that the
only thing differentiating the bundling merge and the greedy
arbiter is the behavior when A and B happen together. The
bundling merge executes A∥B while the greedy arbiter
executes A;B . So lets just look at one of them.

∗[[A → S;A;S | B → S;B;S | A∧B → S;(A∥B);S]]

The first thing we can do is pull S out of the selection
statement since it behaves the same regardless of the
condition. The first action on S happens before any
communication actions on A or B but after at least one of
their associated probes. Therefore, we add an extra guard
checking the probes of A or B and then move the first action
on S so that it precedes the selection statement. The second
action on S happens after all communication actions on A or
B . Therefore, we pull the second action on S out to the other
side of the selection statement.

∗[[A∨B]; S;[A → A | B → B | A∧B → A∥B];S]

Next, we can add in a redundant branch to the selection
statement in preparation for later steps. The newly created
branch ¬A∧¬B → skip will never be executed due to the
guard A∨B beforehand. This has a subtle side-effect of
making the guards A∧¬B and ¬A∧B unstable, requiring a
synchronizer to implement the non-deterministic selection
statement.

∗[[A∨B]; S;

[¬A∧¬B → skip

| A∧¬B → A

| ¬A∧ B → B

| A∧ B → A∥B

];S]

This allows us to factor the selection statement into two,
one for the channel A and one for B . This effectively pulls
the parallel composition out of the selection statement. Note
that the selection statements must remain non-deterministic
because the probes ¬A and ¬B still may be unstable.

∗[[A∨B]; S;

 ([¬A → skip | A → A] ∥

[¬B → skip | B → B]

);S]

Now, we can notice that [¬A → skip | A → A] is
effectively a non-deterministic execute. If there is a request on
A , then execute A . Otherwise skip. So, lets use process
decomposition to factor this out. However, in order to
correctly decompose these processes, we also have to keep the
probes in A∨B in mind. To isolate A and B to the newly
decomposed processes, we create two state variables uA and
uB that keep track of the outcome of the non-deterministic
selection statements. Then we can treat them as shared
variables, checking their value to ensure the non-deterministic
selection has resolved. To do this process decomposition, we
introduce two new channels Sa and Sb that use four phase
communication protocols. Finally, we can use the
transformation described in [17] to implement the unstable
guards on ¬A and ¬B using the stable guards on Sa and
Sb . This allows us to use an arbiter to implement the non-
deterministic selection statements.

∗[[Sa → Sa | A → uA↾; [Sa]; A; uA⇂; Sa]] ∥

∗[[Sb → Sb | B → uB↾; [Sb]; B; uB⇂; Sb]] ∥

∗[[uA∨uB]; S;(Sa ∥ Sb);S]

Ultimately, the module we factored out ∗[[S → S | A
→ uA↾; [S]; A; uA⇂; S]] can be implemented very
succinctly. If Se arrives first, then we just do the complete
handshake on S . If Ar arrives first, then we use a state
variable uA to encode the output of the arbiter from the non-
deterministic selection. Then, we can wait for Se to give us
the grant, and proceed to execute A by lowering Ae . Once A
has completed its execution, as communicated by lowering
Ar , we can reset the circuit, completing the handshakes on A
and S in parallel.

∗[[Se → Sr↾;[¬Se];Sr⇂

| Ar → uA↾;[Se];Ae⇂;[¬Ar];uA⇂;(Ae↾∥Sr↾;[¬Se];Sr⇂)

]]

This reshuffling leads to a very simple circuit using an
ideal arbiter as shown in Fig. 8. One should note that because
of the wire forks internal to the arbiter, any logic containing
uA must also acknowledge Sr .

Fig. 8. Circuit diagram for the proposed Maybe Execute Element.

The circuit in Fig. 8 is called the Maybe Execute Element
because when triggered on S it only executes the interfaced
communication action on A if that communication is ready. If
A is not ready, then the action is simply skipped and the
trigger on S is acknowledged. Therefore, the action on A
“may be executed”.

To make this circuit easier to navigate, we introduce some
syntactic sugar for CHP using a re-write rule.

∗[[Sa → Sa | A →uA↾; [Sa]; A; uA⇂; Sa]] ∥

∗[… [uA] … Sa …]

Specifically, the above CHP is rewritten as follows:

∗[… [A⸰] … A⸰ …]

This transforms the bundling merge specification to

∗[[A⸰∨B⸰]; S;(A⸰ ∥ B⸰);S]

and the greedy arbiter specification to

∗[[A⸰∨B⸰]; S;(A⸰; B⸰);S]

The parallel composition A⸰∥B⸰ as seen in the bundling
merge specification, or the sequential composition A⸰; B⸰ as
seen in the greedy arbiter specification is now just as simple in
Fig. 9 as it would be using syntax directed translation [14].

Fig. 9. Circuit diagram for the sequential (left) and parallel (right)
compositions of the proposed Maybe Execute Element.

Its possible to implement the maybe execute circuit using
buffered arbiters as in Fig. 10. The added transient state in the
buffered arbiters desynchronizes uA and uB from Sr .
Specifically, uA can go up before Sr goes down and Sr
can go up before uA goes down. Now, the first case is not a
problem because Ae is forced to wait for Se anyway.
However, the second case can cause an instability. Therefore,
we have to use an asymmetric C-element to force Sr to wait
for uA to transition to GND . This new C-element
acknowledging uA⇂ can be easily folded into other logic in a
larger design.

Fig. 10. Circuit diagram for the proposed Maybe Execute Element using the
buffered arbiter.

Therefore, the only difference between the state transition
diagrams of the ideal arbiter maybe execute and the buffered
arbiter maybe execute is the first case that we identified. This
just creates an extra state in Fig. 11 highlighted in red beyond
the ideal arbiter's state transition diagram. Take note that this
and further diagrams are rendered using the standard state
transition diagram notation from the asynchronous literature,
as found in [31], and is not a conventional finite automaton
even though the graphical notation is similar.

Fig. 11. State transition diagram of the proposed Maybe Execute Elements.
The Buffered Arbiter approach adds the highlighted state.

It is possible to optimize this further by replacing the gate
driving Ae with pass transistor logic. While it is more
performant for two inputs, it does not scale well beyond that.

Lastly, note that for efficiency, this implementation
assumes that the arbiter is fair as noted in [17]. If the arbiter is
not fair, then it is possible for A to execute multiple
handshakes before raising Sr . The opportunistic merge in [1]
makes a similar assumption.

V. GREEDY ARBITER AND BUNDLING MERGE

Circling back to the bundling merge and greedy arbiter,
this transformation makes the specification for a bundling
merge look very similar to a deterministic merge and a greedy
arbiter look very similar to an alternating merge. The only
departure from the deterministic specification is that we have
to actively check to make sure at least one of the input
channels is requesting a grant [A⸰∨B⸰] . If not, then the
circuit will simply busy wait instead of blocking, repeatedly
and unnecessarily executing communication actions on S ,
wasting a lot of energy along the way.

∗[[A⸰∨B⸰]; S;(A⸰ ∥ B⸰);S]

∗[[A⸰∨B⸰]; S;(A⸰; B⸰);S]

To see the busy-wait versions, look no further than back to
the sequential and parallel composition circuits in Fig. 9.
However, implementing the extra check for [A⸰∨B⸰] which
makes it blocking requires adding only two extra transistors,
as highlighted in Fig. 12, to what would otherwise just be an

inverter. The transistor network that drives Sr in Fig. 12 and
Fig. 14, is ultimately a generalized C-element with a weak
staticizer. The cross-coupled inverters form a latch whose
value is set by the pull-up and pull-down networks of the
C-element. The weak backwards inverter is a staticizer,
designed to keep the previous state of the C-element when
both the pull-up and pull-down networks are off.

Fig. 12. Circuit diagrams for proposed greedy arbiter (left) and bundling
merge (right).

The state transition diagram of this interface between C ,
S , uA and uB is shown in Fig. 13. Again, the extra states
introduced in the buffered arbiter implementations are
highlighted in red.

Fig. 13. State transition diagram of the proposed interface for the bundling
merge and greedy arbiter. The Buffered Arbiter approaches add the

highlighted states.

And with some peephole circuit optimization, we get the
circuits presented in Fig. 14. Notice that no single gate in the
greedy arbiter has a transistor stack length that is dependant
upon the number of inputs. That means that one could scale it
to an arbitrary number of inputs without ever introducing any
gate trees. For the bundling merge, the generalized C-element
driving Sr does grow with the number of inputs. However
for the most part, that can be implemented as a tree of standard
C-elements. The final C-element at the root of the tree would
need to include the highlighted transistors attached to its
ground node.

Furthermore, if the gates driving c , w , and Sr in [1]
were merged together, the inverter on Sa would no longer be
necessary. With the inverter removed, we would have
successfully re-derived the bundling merge presented in this
work. This similarity shows the power of our systematic
approach to derive circuits of similar quality to carefully hand-
crafted circuits in the literature.

Fig. 14. Optimized circuit diagrams for the ideal-arbiter version of the
proposed greedy arbiter (left) and bundling merge (right).

More generally, we can implement any arbiter of the form
∗[[wait expr];S;(compose expr);S] using the
same basic template. For example, a one-writer two-reader
lock where the writer gets priority is ∗[[W⸰∨R0⸰∨R1⸰];S;
(W⸰;(R0⸰∥R1⸰));S] . Alternatively, we could give the
readers priority by modifying the composition expression:
∗[[W⸰∨R0⸰∨R1⸰];S;((R0⸰∥R1⸰);W⸰);S] . Or we could
require both readers to make a request before either of them
get the grant by modifying the wait expression:
∗[[W⸰∨R0⸰∧R1⸰];S;(W⸰;(R0⸰∥R1⸰));S] . This last
example demonstrates the power of this system to produce
solutions to arbitration problems that cannot be otherwise
constructed with the circuits found in the literature. In general,
these types of solutions come from wait expressions that are
not simply an OR across all input request signals.

When optimizing the buffered arbiter design in Fig. 15,
take note that we do not have to wait for uA to go low before
passing the grant off to the next request. This is because vA↾
requires that Ar is lowered thereby handing the grant back to
us. We just need to make sure that uA and uB complete their
transition before we complete the handshake. This allows us to
merge the check for uA⇂ and uB⇂ into the C-element
driving Sr making it a symmetric generalized C-element.

Fig. 15. Optimized circuit diagrams for the buffered-arbiter version of the
proposed greedy arbiter (left) and bundling merge (right).

The process of extending this circuit to many inputs is not
altogether obvious. There will still be a C-element tree driving
Sr similar to the ideal arbiter version, with the special root
node that checks the upgoing transitions of uA , uB , etc.
However, the downgoing transitions of those signals must be
checked at the leaves of the tree. This prevents the transistor
stacks at the root node from growing too long.

Aside from the bundling merge circuit in [1], the circuits
available in the literature rely upon hierarchical composition to
scale to many inputs. This connects the child-grant channel A
or B of one arbitration circuit to the parent-grant channel S
of another. Furthermore according to the authors, scaling the
flat composition in [1] above 3 inputs becomes dangerous due
to their timing assumptions, and the standard cell library is
unlikely to have the necessary gates for w in Fig. 5.

VI. EVALUATION

We developed and evaluated all of these circuits using a set
of in-house tools, a version of which is described in [22] and
publicly available at [20]. We also verified correctness for all
of the elements described in this paper with a brute force
switch-level simulation which identifies instability,
interference, and deadlock across all states. No environmental
assumptions were required since this was verified using simple
sources and sinks on the input and output channels. We

automatically translated these specifications into SPICE
netlists and verified their analog properties using Synopsys's
combined simulator with VCS, a Verilog simulator, to simulate
the testbench and HSIM, a fast SPICE simulator, to report
power and performance metrics.

To evaluate the energy per operation and throughput of
these circuits, we used a 1V 28nm process and protected each
of the digitally driven channels with a FIFO of three WCHB
[30] buffers isolated to a different power source to get more
accurate results. All of the circuits are sized minimally with a
pn-ratio of 2 , and we use weak feedback staticizers for all of
the C-elements in our designs. Circuitry necessary for reset
was not included in any of the above descriptions. The
performance values for the cited work is determined using the
same method.

Fig. 11 shows the state transition diagram for the maybe
execute element, covering all combinations of possible signal
transitions under any possible timing. The figure was derived
directly from the circuit, demonstrating that the maybe execute
element has no switching hazards on any of the digital gates
under any possible timing. Furthermore, the handshake on A
always waits for the parent grant from S , and the parent grant
is not returned until the handshake on A has completed. This
guarantees that child grants remain mutually exclusive.

The circuit family we use guarantees that if two
components are independently verified to be robust under all
possible delay scenarios, and they only interact through delay
insensitive handshake protocols, then their composition is also
robust. Therefore, the compositions in Fig. 9 maintain timing
robustness characteristics.

Finally, the state transition diagram in Fig. 13 was
similarly derived, demonstrating that the bundling merge and
greedy arbiter interface has no switching hazards on any of the
digital gates under any possible timing. Specifically, all
upgoing transitions on uA and uB must happen after Ce⇂
and all downgoing transitions must happen after Ce↾ , keeping
the gate driving Sr stable.

Therefore, our designs suffer from none of the subtle
timing issues we highlighted in Section 3. Meanwhile, our
designs expose a more general strategy for composing
arbitrary non-deterministic selection expressions and show
good performance with reasonable energy requirements.
Furthermore, our designs only require 2 gates beyond those
typically found in commercial standard-cell libraries, the
arbiter and the C-element executing the wait expression. These
two cells can be easily implemented using standard techniques
or automated layout [29].

In a real system, arbitration circuits are likely to be few
and far between, so any enhancements demonstrated by our
circuits are likely to have little to no effect on the system
performance. Therefore, the goal of our analysis is simply to
ensure that these circuits do not end up bottlenecking the
system performance beyond what is already in the literature.
Any performance enhancements demonstrated by our circuits
are not generally a result of the systematic strategy we
developed, but are instead a result of the peephole
optimizations that come after. To be fair, it is surprising that
circuits which more strictly implement the QDI delay model

can demonstrate any performance enhancement at all.

For the bundling merge A∥B , our buffered arbiter
approach, with 68 transistors, operates 5% faster and
consumes 4% less energy per operation than previous work [1]
with 78 transistors. Our ideal arbiter version, with 69
transistors, is slightly worse than the normal arbiter design in
every metric because it moves one of the acknowledgement
checks earlier in the handshake.

Fig. 16 shows the performance and Fig. 17 shows the
energy of each bundling merge design as they scale to many
inputs. The high activity (top) plot assumes that all inputs are
making requests and the grants are servicing those requests at
max possible throughput while the low activity (bottom) plot
assumes that only one input is making requests while the
others are inactive.

Fig. 16. High activity (top) and low activity (bottom) performance metrics for
the bundling merge A∥B as it scales to many inputs.

When scaling the designs beyond 2 inputs with high
activity, the flat ideal arbiter design is quickly superior in both
frequency and energy. This is primarily because all of the
nodes in the tree composition are unbuffered, so a request has
to be passed all the way up and the grant back down the tree
before the requesting process can be serviced. This incurs a
significant delay that the flat compositions easily avoid.

Fig. 17. High activity (top) and low activity (bottom) energy metrics for the
bundling merge A∥B as it scales to many inputs.

At lower activity, the tree compositions will start to
perform better because they have to check fewer nodes. More
specifically, if 1 out of N nodes are making requests, the flat
composition has to check all N while the tree compositions

only have to check O(log2(N)) nodes. In the low activity
energy plots in Fig. 17, this is apparent because the tree
designs use much less energy overall. However, the low
activity frequency plots in Fig. 16 show that the flat ideal
arbiter design remains superior to the tree designs. In a real
system, if access to a shared resource is a bottleneck, and a
bundling merge is used to arbitrate, then the performance
gains from the flat ideal bundling merge can ultimately lead to
an improvement in overall system performance.

For the greedy arbiter A; B , our buffered arbiter version,
with 59 transistors, and our ideal arbiter version, with 65
transistors, both operate slower and consume more energy than
[3] with 48 transistors and [2] with 35 transistors. This is to be
expected since [3] and [2] both made significant timing
assumptions, sacrificing reliability in order to fit their power
and throughput budget.

Fig. 18. High activity (top) and low activity (bottom) performance metrics for
the greedy arbiter A;B as it scales to many inputs.

Fig. 18 shows the performance and Fig. 19 shows the
energy of each greedy arbiter design as they scale to many
inputs. Again, the high activity (top) plot assumes that all
inputs are making requests and the grants are servicing those
requests at max possible throughput while the low activity
(bottom) plot assumes that only one input is making requests
while the others are inactive.

Fig. 19. High activity (top) and low activity (bottom) energy metrics for the
greedy arbiter A;B as it scales to many inputs.

As the greedy arbiter is scaled beyond two inputs with
high activity, the flat ideal arbiter design is still clearly
superior to the tree designs in both frequency and energy.

However, the effect of lower activity is more significant.
While the bundling merges check all N inputs in parallel, the
greedy arbiter does so one at a time. This means that the tree
composition will get a significant advantage to throughput
beyond the flat compositions at lower activity levels. It is not
possible to include [2] in this comparison because it deadlocks
all but one input in this scenario.

VII. CONCLUSION

In this paper, we presented a robust implementation for a
non-deterministic channel action and showed how it could be
easily composed to generate robust implementations for
bundling merges and greedy arbiters along with any other
desired locking mechanism. Along the way, we elaborated on
the difference between the buffered arbiter and ideal arbiter
models and how those differences affect their respective
circuit implementations. Finally, we evaluated these designs,
showing better performing bundling merge and a similarly
performing greedy arbiter.

Overall, the bundling arbiter and greedy arbiter are
different problems. [2] and [3] simply present circuit diagrams
for greedy arbiters rather than an approach that could be used
to design a bundling merge as well. This is also the case for
[1], where a bundling merge circuit is presented rather than an
approach that could also be used to design a greedy arbiter.
This paper is the first to present a unified approach to both
problems.

APPENDIX

A. CHP Notation
Communicating Hardware Processes (CHP) is a hardware

description language used to describe clockless circuits
derived from C.A.R. Hoare's Communicating Sequential
Processes (CSP) [15]. A full description of CHP and its
semantics can be found in [27]. Below is an informal
description of that notation listed top to bottom in descending
precedence. For a complete discussion of the interaction
between the handshake expansions of channel actions like
send and receive and the composition operators, see [18].

Dataless vs Datafull Dataless expressions operate on node
voltages while Datafull operate on delay insensitive
encodings. Mixed expressions implicitly cast the datafull to
dataless using the encoding's validity. Specifically, for a
datafull expression e its positive sense e is cast to a validity
check while its negative sense ¬e is cast to a neutrality
check. null is defined to be a neutral state of an encoding.

A Channel X consists of a request Xr and either an
acknowledge Xa or enable Xe . The acknowledge and enable
serve the same purpose, but have inverted sense. With these
signals, a channel implements a network protocol to transmit
data from one QDI process to another.

Skip skip does nothing and continues to the next
command.
Dataless Assignment n↾ sets the voltage of the node n
to Vdd and n⇂ sets it to GND .
Assignment v := E waits until the datafull expression,
E , is valid, then assigns that value to the variable, v .
Send X!E waits until the datafull expression E has a

valid value, then sends that value across the channel X .
Ultimately, a send is expanded into a handshake on its
underlying signals. The standard four phase send on
channel X is Xr := E; [Xa]; Xr := null;
[¬Xa] for an acknowledge channel or Xr := E;
[¬Xe]; Xr := null; [Xe] for an enable channel.
Receive X?v waits until there is a valid value on the
channel X , then assigns that value to the variable v .
Ultimately, a receive is expanded into a handshake on its
underlying signals. The standard four phase receive on
channel X is v := Xr; Xa↾; [¬Xr]; Xa⇂ for an
acknowledge channel or v := Xr; Xe⇂; [¬Xr];
Xe↾ for an enable channel.
Dataless Channel Action If X is a dataless channel, then a
send with an acknowledge channel is indistinguishable
from a receive with an enable channel and a send with an
enable channel is indistinguishable from a receive with an
acknowledge channel. Therefore, we can simplify the
syntax for the dataless send X! or receive X? to X .
Probe X? is used determine if the channel is ready for a
receive action, returning the value waiting on the request
Xr without executing the receive. X! is used to determine
if the channel is ready for a send action, expanding into
either ¬Xa given an acknowledge or Xe given an enable.
For dataless channels, the syntax is simplified to X .
Sequential Composition S; T executes the programs S
followed by T .
Parallel Composition S ∥ T executes the programs S
and T in any order.
Deterministic Selection [G1 → S1▯…▯Gn → Sn]
where Gi , called a guard, is a dataless expression and Si
is a program. The selection waits until one of the guards,
Gi , evaluates to Vdd , then executes the corresponding
program, Si . The guards must be stable and mutually
exclusive. The notation [G] is shorthand for [G →
skip] .
Non-Deterministic Selection [G1→S1|…:Gn→Sn] is the
same as Deterministic Selection except that the guards do
not have to be stable or mutually exclusive. If two or more
evaluate to Vdd simultaneously, then one is picked
arbitrarily (not necessarily random). In a circuit, this choice
is implemented by a collection of arbiters and
synchronizers. As discussed in Section 2, when two or
more guards evaluate to Vdd simultaneously, it can cause
a metastable state in the arbiter or synchronizer. This
metastable state then resolves non-deterministically, giving
the grant to one of the branches of the selection statement.
Therefore, the digital model of this selection statement is
also non-deterministic in such a condition.
Repetition ∗[G1 → S1▯…▯Gn → Sn] is similar to the
selection statements. However, the action is repeated until
no guard evaluates to Vdd . ∗[S] is shorthand for
∗[Vdd → S] .

REFERENCES

[1] Andrey Mokhov, Victor Khomenko, Danil Sokolov, and Alex
Yakovlev. “Opportunistic merge element.” International Symposium
on Asynchronous Circuits and Systems (ASYNC), Pages 116-123.
IEEE, May 2015.

[2] Kwabena Boahen. “Point-to-point connectivity between neuromorphic
chips using address events.” Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, Volume 47 Issue 5 Pages
416–434. IEEE, May 2000.

[3] Kwabena Boahen. “A burst-mode word-serial address-event link-i:
transmitter design.” Transactions on Circuits and Systems I: Regular
Papers, Volume 51 Issue 7 Pages 1269–1280. IEEE, July 2004.

[4] Mark Greenstreet. “Real-time merging.” Advanced Research in
Asynchronous Circuits and Systems. 1999.

[5] Thomas Chaney, and Warren Littlefield. “The glitch phenomenon.”
Computer Systems Laboratory, Washington University, Saint Louis,
MO, Technical Memorandum 10, 1966.

[6] Thomas Chaney, and Charles Molnar. “Anomalous behavior of
synchronizer and arbiter circuits.” Transactions on Computers, Volume
100 Issue 4 Pages 421-422. IEEE, 1973.

[7] Nabil Imam and Rajit Manohar. “Address-Event Communication
Using Token-Ring Mutual Exclusion.” International Symposium on
Asynchronous Circuits and Systems (ASYNC). IEEE, April 2011.

[8] Alain Martin. “Distributed mutual exclusion on a ring of processes.”
Science of Computer Programming, Volume 5, Pages 265-276. 1985.

[9] Carver Mead, and Lynn Conway. “Introduction to VLSI Systems.”
Addison-Wesley Longman Publishing Co., Boston, MA, 1979.

[10] Mika Nystrom, Rajit Manohar, and Alain Martin. “Method and
apparatus for a failure-free synchronizer.” US Patent: US6690203B2,
2004.

[11] Fred Rosenberger, et al. “Q-modules: Internally clocked delay-
insensitive modules.” Transactions on Computers, Volume 37 Issue 9
Pages 1005-1018. IEEE, 1988.

[12] Charles Seitz. “Ideas about arbiters.” Lambda First Quarter, Pages
10-14. 1980.

[13] Mishell Stucki, and Jerome Cox Jr. “Synchronization strategies.”
Caltech Conference On Very Large Scale Integration, Pages 375-393.
California Institute of Technology, Pasadena, CA, 1979.

[14] Steven Burns, and Alain Martin. “Syntax-directed translation of
concurrent programs into self-timed circuits.” The Fifth MIT
Conference on Advanced Research in VLSI, Pages 35-50. Cambridge,
MA, 1988.

[15] Sir Charles Antony Richard Hoare. “Communicating Sequential
Processes”. Communications of the ACM, pages 666-677. 1978.

[16] Sean Keller, Michael Katelman, and Alain Martin. “A Necessary and
Sufficient Timing Assumption for Speed-Independent Circuits.”
International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 65–76. IEEE, 2009.

[17] Rajit Manohar, Mika Nystrom, and Alain Martin. “Precise exceptions
in asynchronous processors.” Conference on Advanced Research in
VLSI, Pages 16–28. 2001.

[18] Rajit Manohar. “An analysis of reshuffled handshaking expansions.”
International Symposium on Asynchronous Circuits and Systems.
ASYNC 2001. IEEE, 2001.

[19] Rajit Manohar, and Yoram Moses. “Analyzing isochronic forks with
potential causality.” International Symposium on Asynchronous
Circuits and Systems (ASYNC). IEEE, 2015.

[20] Rajit Manohar. “ACT Toolset.” https://github.com/asyncvlsi/act, 2019.
[21] Rajit Manohar, and Yoram Moses. “Asynchronous Signalling

Processes.” International Symposium on Asynchronous Circuits and
Systems (ASYNC). IEEE, 2019.

[22] Rajit Manohar. “An Open-Source Design Flow for Asynchronous
Circuits.” Government Microcircuit Applications and Critical
Technology Conference. March 2019.

[23] Alain Martin. “On Seitz' Arbiter.” Computer Science Department at
California Institute of Technology: Caltech-CS-TR-86, 1986.

[24] Alain Martin, Steven Burns, Tak-Kwan Lee, Drazen Borkovic, and
Pieter Hazewindus. “The First Aysnchronous Microprocessor: The
Test Results.” Computer Science Department at California Institute of
Technology, CaltechCSTR:1989.cs-tr-89-06, 1989.

[25] Alain Martin. “Programming in VLSI: From communicating processes
to delay-insensitive circuits. No. CALTECH-CS-TR-89-1.” Computer
Science Department at California Institute of Technology:
CaltechCSTR:1989.cs-tr-89-01, 1989.

[26] Alain Martin. “The limitations to delay-insensitivity in asynchronous
circuits.” Sixth MIT Conference on Advanced Research in VLSI,
Pages 263–278. Cambridge, MA, 1990.

[27] Alain Martin. “Synthesis of Asynchronous VLSI Circuits”. Computer
Science Department at California Institute of Technology: Caltech-CS-
TR-93-28, 1991.

[28] Jon Tse, and Derek Lockhart. “An Asynchronous Constant-Time
Counter for Empty Pipeline Detection”. jontse.com, 2009.

[29] Robert Karmazin, Carlos Tadeo Ortega Otero, and Rajit Manohar.
“celltk: Automated layout for asynchronous circuits with nonstandard
cells.” International Symposium on Asynchronous Circuits and
Systems. IEEE, 2013.

[30] Andrew Matthew Lines. “Pipelined Asynchronous Circuits.”
California Institute of Technology, 1998.

[31] Alexandre Yakovlev, Luciano Lavagno, and Alberto Sangiovanni-
Vincentelli. “A unified signal transition graph model for asynchronous
control circuit synthesis.” ICCAD. 1992.

Ned Bingham is a PhD student at Yale. He received
his B.S. (2013) and M.S. (2017) from Cornell.
During his Masters, he designed a set of tools for
working with self-timed systems using a control-
flow specification called Handshaking Expansions.
Currently, he is researching self-timed systems as a
method of leveraging average workload
characteristics in general compute architectures.
Between his studies, he has worked at Intel on Pre-
Silicon Validation (2011, 2012), Qualcomm

researching arithmetic architecture (2014), and Google researching self-timed
systems (2016). (www.nedbingham.com)

Rajit Manohar is the John C. Malone Professor of
Electrical Engineering and Professor of Computer
Science at Yale. He received his B.S. (1994), M.S.
(1995), and Ph.D. (1998) from Caltech. He has been
on the Yale faculty since 2017, where his group
conducts research on the design, analysis, and
implementation of self-timed systems. He is the
recipient of an NSF CAREER award, nine best
paper awards, nine teaching awards, and was named
to MIT technology review's top 35 young innovators

under 35 for contributions to low power microprocessor design. His work
includes the design and implementation of a number of self-timed VLSI chips
including the first high-performance asynchronous microprocessor, the first
microprocessor for sensor networks, the first asynchronous dataflow FPGA,
the first radiation hardened SRAM-based FPGA, and the first deterministic
large-scale neuromorphic architecture. Prior to Yale, he was Professor of
Electrical and Computer Engineering and a Stephen H. Weiss Presidential
Fellow at Cornell. He has served as the Associate Dean for Research and
Graduate studies at Cornell Engineering, the Associate Dean for Academic
Affairs at Cornell Tech, and the Associate Dean for Research at Cornell Tech.
He founded Achronix Semiconductor to commercialize high-performance
asynchronous FPGAs. (csl.yale.edu/~rajit)

