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Abstract—Greedy  arbiters  and  bundling  merges  compose
simultaneous  events  in  sequence  and  parallel  respectively.
Previous designs for these problems handle two to three inputs,
and  can  be  composed  in  a  tree  topology  to  handle  more.  In
addition, they include subtle timing assumptions beyond the QDI
delay  model  and  undocumented  timing  assumptions  in  their
arbiter's  digital  model.  In  this  paper,  we  discuss  two  slightly
different digital models that we call the ideal arbiter and buffered
arbiter  models,  and  match  them  to  CMOS  implementations.
From  CHP  specifications  of  the  greedy  arbiter  and  bundling
merge, we derive the Maybe Execute Element. We then show how
it may be systematically composed to produce improved circuits
for both which use a small number of simple gates, strictly abide
by  the  QDI  delay  model,  and gracefully  scale  to  an  arbitrary
number of inputs. Finally, we touch on how this approach may be
used to develop scalable circuit  solutions to more sophisticated
arbitration problems.

Keywords—arbitration,  asynchronous,  quasi-delay insensitive,
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I. INTRODUCTION

In  asynchronous  logic,  the  implementation  of  non-
deterministic choice requires the use of two-input two-output
mutual exclusion elements.  A mutual exclusion element has
the following behavior: if one of its inputs is asserted, then the
corresponding output is asserted. However, if both inputs are
asserted,  then  it  asserts  only  one  of  the  outputs,  picking
between  the  two  arbitrarily.  Because  any  circuit  that
implements  this  deceptively  simple  behavior  can  exhibit
metastability,  careful  analog  analysis  is  required  to  ensure
correct operation [5][6].

These  circuits  may  be  divided  into  two  classes:
Synchronizers and Arbiters. Synchronizers handle the general
case in which the asserted inputs  may be unstable meaning
that they may be deasserted before its corresponding output
has been asserted [10]. Arbiters handle the more specific case
in  which  the  asserted  inputs  remain  stable.  While
synchronizers  require  fewer  environmental  restrictions,  they
are also a more complex circuit. Furthermore, [17]  observed
that it is possible to implement unstable conditions in certain
practical  cases  by  exploiting  the  assumption  that  a  CMOS
arbiter  is  in  fact  a  fair  circuit  when  both  of  its  inputs  are
asserted.  Hence,  non-deterministic  choices  in  asynchronous

circuits almost always use standard arbiters as their building
blocks.

One  common  use  for  an  arbiter  involves  implementing
mutually exclusive access to a shared resource. Two processes
may  request  access  to  a  shared  resource  through  a  third
arbitrating process commonly referred to as a merge element
or  mixer  [4].  These  elements  have  further  been  used  in  a
variety of mutual exclusion problems. For example, [7] used
the  ideas  from  [8]  to  communicate  pulses  within  a
neuromorphic system.

The  requesting  processes,  the  shared  resource,  and  the
merge element all communicate across channels. Each channel
is  a  pair  of  request/acknowledge  wires  on  which  two
communicating  processes  execute  a  four  phase  handshake
protocol.  If  either  requesting process  asserts  its  request,  the
merge  element  must  first  request  a  lock  ensuring  the
availability of the shared resource. When the shared resource
acknowledges  that  request  with  a  grant,  the  merge  element
may dispatch that  grant  by acknowledging one of  the input
requests. Once the requesting process is done and lowers its
request, the merge element unlocks the resource and the entire
cycle begins again. The first half of the handshake is used to
request the resource, and the second half is used to release the
resource.

However,  there  are  other  scenarios  that  require  more
complex  constraints  for  access  to  a  shared  resource.  For
example,  two  simultaneous  requests  could  be  granted
sequentially before unlocking the resource as implemented by
a greedy arbiter. This is used in [2] to optimize tree-arbitrated
exclusive access of many channels to a single bus, in [3]  to
arbitrate data received from pixels in an event-driven image
sensor,  and  in  [7]  for  asynchronous  address  event
communication in spiking neural networks.

Alternatively, both requests could be granted concurrently
as implemented by a bundling merge in [1].  An example of
this involves using a counter to track the number of in-flight
data items in a variable latency pipeline [28].  When a  data
value enters the pipeline, the counter is incremented; when a
value leaves the pipeline, the counter is decremented. If the
increment  and  decrement  requests  occur  simultaneously,  a
bundling merge could combine them and skip both operations.



In  the  context  of  spiking  neural  networks  with  lossy
communication,  a  bundling  merge  could  be  used  to  merge
multiple near-simultaneous spikes into a single spike, reducing
communication  cost  at  the  expense  of  fidelity.  If  you  are
designing an event-driven image sensor, events from multiple
pixels in a column could be resolved by a read of the whole
column.

One can imagine more complex arbitration problems that
come from the interaction between these two. For example, a
one-writer two-readers lock could mediate access to a shared
memory with a write-only port and two read-only ports. Or,
the  counter  in  [28]  could  have  a  clear  signal  to  execute  a
squash across the pipeline.  This would have to be mutually
exclusive  from the  execution  of  the  bundled  increment  and
decrement  requests.  These  scenarios  require  generalized
arbitration expressions.  While this could be implemented by
composing the greedy arbiter and bundling merge in various
ways,  arbitration  trees  are  an  inefficient  way  to  solve  the
problem for a small to medium number of inputs.

Finally, there are scenarios that cannot be implemented via
composition.  Circling  back  to  the  counter  in  [28],  suppose
there are two entry and two egress points to the pipeline and
the throughput of increment and decrement requests is above
and beyond what the counter can manage. Then, you want to
bundle any two requests allowing you to either skip the least
significant  bit  of  the  counter  or  skip  the  counter  altogether
thereby reducing the throughput requirement on the counter by
a factor of two.

In this paper, we re-examine the previous implementations
of circuits for the greedy arbiter [2][3] and bundling merge [1],
analyze  their  timing  assumptions,  and  propose  alternative
templates for more robust arbitration expressions. In Section 2,
we  discuss  the  digital  model  used  to  analyze  the  arbiter's
behavior,  introducing  a  distinction  between  the  ideal  and
buffered arbiters and their CMOS implementations. Then, in
Section  3,  we  describe  how  the  application  of  this  model
affects  previously  designed  arbitration  circuits.  Section  4
proposes a new building block, the maybe execute element, as
the basis for a family of arbitration problems which, in Section
5, is used to construct the bundling merge and greedy arbiter.
In Section 6, we evaluate our design performance and compare
it against the previous designs. Finally, the Appendix gives an
overview  of  the  program  and  circuit  notation  used  in  this
paper.

II. DIGITAL ABSTRACTIONS FOR ARBITRATION

Under  the  delay  insensitive  (DI)  delay  model,  a  circuit
should operate correctly independent of gate and wire delays.
Correct operation means that the circuit remains stable, non-
interfering,  and  deadlock-free.  An  instability,  or  glitch,  can
cause data-loss or lead to interference; interference, or a short,
can cause permanent circuit damage; and deadlock halts the
computation  prematurely.  To  achieve  this  goal,  every
transition must acknowledge every input to its driving gate. A
transition  a  acknowledges  another  b  if  there  is  a  causal
sequence of transitions from a  to b  that prevents b  from
firing until after a  has completed.[26]

In order for this model to be Turing Complete, the quasi-

delay insensitive (QDI) delay model makes one exception to
acknowledgement called the Isochronic Fork Assumption. If
there is a wire fork to multiple gates, and one of those gates
does not acknowledge all of the transitions on that wire, then
we  assume  that  the  delay  from  the  driver  to  the  non-
acknowledging gate is bounded. In this model it is always safe
to place an inverter before the wire fork. However,  because
gates  have  unbounded  delay,  placing  an  inverter  after  an
isochronic  fork and before  the  non-acknowledging gate  can
cause  an  instability.  Because  the  isochronic  fork  timing
assumption  is  easy  to  guarantee  and  maintain,  real  QDI
circuits  are  robust  by  construction  to  temperature  variation,
process variation, sizing, noise, etc [24]. For a more detailed
discussion on the QDI model and this timing assumption, see
[26], [16], and [19].

The  standard  arbiter  circuit  in  Fig.  1  is  responsible  for
ensuring  mutually  exclusive  outputs  given  two  inputs.  In
effect, it determines which of the two input requests arrived
first. Ultimately, it is an analog circuit and must be carefully
verified  using  analog  analysis.  Therefore,  digital  simulators
must  explicitly  model  the arbiter's  behavior  as  a  black-box.
The implementations of the bundling merge in [1], and greedy
arbiter in [2] along with many others in the literature assume
an ideal arbiter in which the two outputs are always mutually
exclusive  high.  This  section  examines  the  analog
characteristics of the circuit used to implement an arbiter, and
focuses on appropriate digital abstractions for different arbiter
circuits.

The arbiter in Fig. 1 consists of two stages: an RS latch
followed  by  an  instability  filter  (also  called  a  metastability
filter).  If both a  and b  transition to Vdd  simultaneously,
then the RS-latch can become metastable with both _u  and
_v  only partially transitioning. At resolution, one of the two
will finish its transition to GND  while the other will return to
Vdd ,  causing  a  glitch  [5].  Therefore,  the  second  stage
implementing an instability filter is required that converts the
glitch caused by the metastable latch into a delay. According
to [13], an NMOS form was first designed by Sutherland in
1976 which later appeared in [9] and [12]. To our knowledge,
the CMOS form we use first appears in [11]. This arbiter will
be expressed in circuit diagrams as a box labelled "Arb".

Fig. 1. Circuit diagram for the standard Arbiter design.

The  inverters  in  the  instability  filter  have  unpredictable
delay which depends on their load as determined externally to
the arbiter. Because the downgoing transition of one output as
highlighted blue in Fig. 1 is allowed to happen in parallel with
the upgoing transition of the other as highlighted red, they can
both be high at the same time, violating the blackbox model
from  the  literature.  This  has  practical  implications,  for
example in the next section we analyze circuits in the literature
that  depend  upon the  outputs  of  the  arbiter  being  mutually
exclusive  which  is  something  that  this  circuit  does  not



guarantee.

In practice,  as long as the two outputs u  and v  drive
similar capacitive loads, then the blackbox digital model holds
true  and  the  two  outputs  remain  mutually  exclusive  high.
However,  should  they  end  up  driving  different  loads,  that
model will fail. Suppose u  is driving a high capacitive load
and v  is not. If a , b , and u  are at Vdd  and v  is at GND ,
then lowering a  could cause a transient state in which both u
and v  are high. A SPICE simulation in Fig. 2 replicates this
behavior, showing both u  and v  above the threshold voltage
after 0.09 ns.

Fig. 2. SPICE waveform for the standard Arbiter design.

In effect, the blackbox model used in the literature has an
extra timing assumption. As suggested by [21], we could treat
this arbiter as a blackbox gate in which u  and v  are treated
as an isochronic fork, and guarantee the output loads in layout.
However,  this  is  an  assumption  that  is  often  lost  when
publishing circuits which use arbiters.

Therefore, a more conservative model for an arbiter that
more  rigorously  implements  the  QDI  delay  model,  and
captures  the  impact  of  arbitrarily  different  loads  on  the
arbiter's  outputs  would  include  output  buffers  that  have  an
unbounded delay.  We refer  to  this  as  the  buffered arbiter
model.  Specifically,  the  digital  abstraction  for  the  arbiter
would  artificially  ensure  that  _u  and  _v  are  mutually
exclusive low, and model u  and v  using ordinary inverters.
The buffered arbiter model includes a transient state where u
and v  can both be high, consistent with Fig. 2.

Fig. 3. Circuit diagram for the proposed Ideal Arbiter design.

Alternatively,  an  ideal  arbiter  that  avoids  the  buffered
arbiter model can be implemented by folding a latch into the
instability filter as shown in Fig. 3.  This  forces the pull  up
networks of the arbiter's outputs to acknowledge the pull down
network  of  the  other,  keeping  them  mutually  exclusive.
Importantly,  the  pass  transistor  logic  implementing  the
instability filter has to remain intact. This is why _v  is still
the source node for the u↾  rule and _u  for the v↾  rule. If
more drive strength is  necessary,  the output  signals  may be
further buffered while maintaining the ideal arbiter model by

adding more latches. This arbiter will be expressed in circuit
diagrams as a box labelled "iArb".

Fig. 4. SPICE waveform for the proposed Ideal Arbiter design.

Now in Fig. 4, the upgoing transition on v  waits for the
downgoing transition on u  to pass the threshold voltage.

III. EXISTING DESIGNS

The buffered and ideal arbiter models ultimately help to
identify the timing assumptions beyond the strict QDI delay
model that might be well-known by the authors of the work,
but  unclear  to  the  readers.  In  subsequent  sections,  we  will
present designs that do not rely upon these timing assumptions
for correct operation, thereby improving their reliability.

A. Bundling Merge
If  we  apply  the  buffered  arbiter  model  to  the  bundling

merge circuit from [1] in Fig. 5, it is possible for the circuit to
go through an entire cycle, asserting and deasserting the grant
request on Sr  while uA  or uB  remains high. This is because
w  can be driven low following Sa↾  and therefore can skip
the check for ¬uA ∧ ¬uB . As long as uA  or uB  continue
to remain high,  Sr  and Sa  will  continue  to  complete  full
handshakes, causing Aa  or Ba  to toggle without Ar  and Br
ever switching.

Fig. 5. Opportunistic Merge from [1].

However,  the  inverter  that  causes  this  failure  cannot  be
removed. If it were, then the decomposition of w  and c  from
the gate driving Sr  would create a second failure mode. After
Ar↾  causes Sr↾  followed by Sa↾  and the request on Ar  is
acknowledged, eventually causing uA⇂ , another request can
appear on Br , simultaneously causing uB↾ . This could cause
a glitch on w  that can propagate out Sr .  The inverter  and
AND gate from Sa  into w  successfully covers this glitch as
long as the application of the atomic complex gate assumption
to the driver of w  is valid. This assumption requires the gate
highlighted red in Fig. 5 to behave as if it were a single gate.



Ultimately,  this  means  that  the  inverter  in  that  gate  must
transition before uA⇂ .

We  remark  that  since  [1]  already  assumes  a  fast  local
inverter through their application of the atomic complex gate
assumption to the driver of w , the assumption of fast inverters
in  the  implementation  of  the  arbiter  is  likely  reasonable  in
practice  as  long  as  an  effort  is  made  to  implement  that
assumption in layout.

B. Greedy Arbiter
Applying the buffered arbiter model to the greedy arbiter

from  [2]  in  Fig.  6  breaks  far  more.  This  is  because  the
environment is allowed to bypass various stages of the internal
handshake. Suppose a request on Ar  has already been given
the grant and Ar  is subsequently lowered, but Sr  and Se  are
still high. Then, as Sr  is being lowered, a request on Br  can
arrive causing a down-up glitch on Sr .

Fig. 6. Greedy Arbiter from [2].

If  Br  happens  a  little  later,  and  Sr  subsequently
transitions  low,  then the  request  on  Br  will  drive  v  high
causing a down-up glitch to propagate out Be .

Suppose Br  arrives even later and neither of these glitches
happen. This means Sr  remains low long enough for Se  to
transition  high.  Then,  as  Se  transitions  high,  an  up-down
glitch could be generated on v  since the request on Br  has
simultaneously lowered _v .

Finally, as documented in [3], the greedy arbiter found in
[2] does not implement fairness and will revisit the same child
repeatedly while deadlocking the other child.

Fig. 7. Greedy Arbiter from [3].

The greedy arbiter from [3] in Fig. 7 already works under
the  buffered  arbiter  model,  but  still  has  other  environment-
dependent timing assumptions. Suppose a request arrives on
Ar  causing Sr↾ .  Then, as Se  is  lowered,  another  request
arrives driving Br↾  and causing an up-down glitch on bo ,
then as long as _u  has not transitioned low in response to the
request on Ar , the glitch on bo  could propagate through the
arbiter and out Be . Alternatively if a request never arrives on
Br , then when Ar  is lowered, Sr  will be lowered and Se

raised.  Then,  Se↾  can  drive  Ae↾  without  _u  ever
transitioning.  So,  a  new request  on Ar  could cause an up-
down glitch on _u . If Sr  goes up and Se  down in response
to this new request, then that glitch will propagate out Ae . It
should be noted that neither of these timing assumptions are
hard to ensure in layout and that the authors of [2] and [3]
made these assumptions intentionally to conserve transistors in
the  face  of  a  severe  restriction  due  to  their  application
requirements.

IV. MAYBE EXECUTE ELEMENT

The  behavior  of  the  bundling  merge  can  be  succinctly
described  with  a  single  selection  statement.  The  selection
statement  is  ultimately  symmetric  across  the  two  input
channels,  meaning it  behaves  the  same regardless  of  which
channel request arrives first.  Given two channels A  and B
using four phase communication protocols and one channel S
using  a  two  phase  communication  protocol,  the  bundling
merge is as follows.

∗[[A → S;A;S | B → S;B;S | A∧B → S;(A∥B);S]]

However, the behavioral description of the greedy arbiter
implemented in [3] is quite a bit more complex since it tries to
remain  symmetric.  Instead  of  implementing  a  symmetric
greedy arbiter,  we implement an asymmetric  one that  looks
similar  to  the  bundling  merge  so  that  we  can  build  both
circuits with common building blocks.

∗[[A → S;A;S | B → S;B;S | A∧B → S;(A;B);S]]

Now,  the  grants  are  always  served  in  the  same  order
regardless of which request arrives first. This means that the
only thing differentiating the bundling merge and the greedy
arbiter is the behavior when A  and B  happen together. The
bundling  merge  executes  A∥B  while  the  greedy  arbiter
executes A;B . So lets just look at one of them.

∗[[A → S;A;S | B → S;B;S | A∧B → S;(A∥B);S]]

The first thing we can do is pull S  out of the selection
statement  since  it  behaves  the  same  regardless  of  the
condition.  The  first  action  on  S  happens  before  any
communication actions on A  or B  but after at least one of
their  associated  probes.  Therefore,  we  add  an  extra  guard
checking the probes of A  or B  and then move the first action
on S  so that it precedes the selection statement. The second
action on S  happens after all communication actions on A  or
B . Therefore, we pull the second action on S  out to the other
side of the selection statement.

∗[[A∨B]; S;[A → A | B → B | A∧B → A∥B];S]

Next, we can add in a redundant branch to the selection
statement  in  preparation  for  later  steps.  The  newly  created
branch ¬A∧¬B → skip  will never be executed due to the
guard  A∨B  beforehand.  This  has  a  subtle  side-effect  of
making the guards A∧¬B  and ¬A∧B  unstable,  requiring  a
synchronizer  to  implement  the  non-deterministic  selection
statement.



∗[[A∨B]; S;

[ ¬A∧¬B → skip

| A∧¬B → A

| ¬A∧ B → B

| A∧ B → A∥B

];S]

This allows us to factor the selection statement into two,
one for the channel A  and one for B . This effectively pulls
the parallel composition out of the selection statement. Note
that  the  selection  statements  must  remain  non-deterministic
because the probes ¬A  and ¬B  still may be unstable.

∗[[A∨B]; S;

  ([¬A → skip | A → A] ∥

[¬B → skip | B → B]

  );S]

Now, we can notice that [¬A → skip | A → A]  is
effectively a non-deterministic execute. If there is a request on
A ,  then  execute  A .  Otherwise  skip.  So,  lets  use  process
decomposition  to  factor  this  out.  However,  in  order  to
correctly decompose these processes, we also have to keep the
probes in A∨B  in mind. To isolate A  and B  to the newly
decomposed processes, we create two state variables uA  and
uB  that keep track of the outcome of the non-deterministic
selection  statements.  Then  we  can  treat  them  as  shared
variables, checking their value to ensure the non-deterministic
selection has resolved. To do this process decomposition, we
introduce two new channels Sa  and Sb  that use four phase
communication  protocols.  Finally,  we  can  use  the
transformation  described  in  [17]  to  implement  the  unstable
guards on ¬A  and ¬B  using the stable guards on Sa  and
Sb . This allows us to use an arbiter to implement the non-
deterministic selection statements.

∗[[Sa → Sa | A → uA↾; [Sa]; A; uA⇂; Sa]] ∥

∗[[Sb → Sb | B → uB↾; [Sb]; B; uB⇂; Sb]] ∥

∗[[uA∨uB]; S;(Sa ∥ Sb);S]

Ultimately, the module we factored out ∗[[S → S | A
→ uA↾; [S]; A; uA⇂; S]]  can be implemented very
succinctly. If Se  arrives first,  then we just do the complete
handshake  on  S .  If  Ar  arrives  first,  then  we  use  a  state
variable uA  to encode the output of the arbiter from the non-
deterministic selection. Then, we can wait for Se  to give us
the grant, and proceed to execute A  by lowering Ae . Once A
has  completed  its  execution,  as  communicated  by  lowering
Ar , we can reset the circuit, completing the handshakes on A
and S  in parallel.

∗[[ Se → Sr↾;[¬Se];Sr⇂

| Ar → uA↾;[Se];Ae⇂;[¬Ar];uA⇂;(Ae↾∥Sr↾;[¬Se];Sr⇂)

]]

This  reshuffling  leads  to  a  very  simple  circuit  using  an
ideal arbiter as shown in Fig. 8. One should note that because
of the wire forks internal to the arbiter, any logic containing
uA  must also acknowledge Sr .

Fig. 8. Circuit diagram for the proposed Maybe Execute Element.

The circuit in Fig. 8 is called the Maybe Execute Element
because when triggered on S  it only executes the interfaced
communication action on A  if that communication is ready. If
A  is  not  ready,  then  the  action  is  simply  skipped  and  the
trigger  on S  is  acknowledged.  Therefore,  the action on A
“may be executed”.

To make this circuit easier to navigate, we introduce some
syntactic sugar for CHP using a re-write rule.

∗[[Sa → Sa | A →uA↾; [Sa]; A; uA⇂; Sa]] ∥

∗[… [uA] … Sa …]

Specifically, the above CHP is rewritten as follows:

∗[… [A⸰] … A⸰ …]

This transforms the bundling merge specification to

∗[[A⸰∨B⸰]; S;(A⸰ ∥ B⸰);S]

and the greedy arbiter specification to

∗[[A⸰∨B⸰]; S;(A⸰; B⸰);S]

The parallel composition A⸰∥B⸰  as seen in the bundling
merge specification, or the sequential composition A⸰; B⸰  as
seen in the greedy arbiter specification is now just as simple in
Fig. 9 as it would be using syntax directed translation [14].

Fig. 9. Circuit diagram for the sequential (left) and parallel (right)
compositions of the proposed Maybe Execute Element.

Its possible to implement the maybe execute circuit using
buffered arbiters as in Fig. 10. The added transient state in the
buffered  arbiters  desynchronizes  uA  and  uB  from  Sr .
Specifically, uA  can go up before Sr  goes down and Sr
can go up before uA  goes down. Now, the first case is not a
problem  because  Ae  is  forced  to  wait  for  Se  anyway.
However, the second case can cause an instability. Therefore,
we have to use an asymmetric C-element to force Sr  to wait
for  uA  to  transition  to  GND .  This  new  C-element
acknowledging uA⇂  can be easily folded into other logic in a
larger design.



Fig. 10. Circuit diagram for the proposed Maybe Execute Element using the
buffered arbiter.

Therefore, the only difference between the state transition
diagrams of the ideal arbiter maybe execute and the buffered
arbiter maybe execute is the first case that we identified. This
just creates an extra state in Fig. 11 highlighted in red beyond
the ideal arbiter's state transition diagram. Take note that this
and  further  diagrams  are  rendered  using  the  standard  state
transition diagram notation from the asynchronous literature,
as found in [31], and is not a conventional finite automaton
even though the graphical notation is similar.

Fig. 11. State transition diagram of the proposed Maybe Execute Elements.
The Buffered Arbiter approach adds the highlighted state.

It is possible to optimize this further by replacing the gate
driving  Ae  with  pass  transistor  logic.  While  it  is  more
performant for two inputs, it does not scale well beyond that.

Lastly,  note  that  for  efficiency,  this  implementation
assumes that the arbiter is fair as noted in [17]. If the arbiter is
not  fair,  then  it  is  possible  for  A  to  execute  multiple
handshakes before raising Sr . The opportunistic merge in [1]
makes a similar assumption.

V. GREEDY ARBITER AND BUNDLING MERGE

Circling back to the bundling merge and greedy arbiter,
this  transformation  makes  the  specification  for  a  bundling
merge look very similar to a deterministic merge and a greedy
arbiter  look  very  similar  to  an  alternating  merge.  The  only
departure from the deterministic specification is that we have
to  actively  check  to  make  sure  at  least  one  of  the  input
channels  is  requesting  a  grant  [A⸰∨B⸰] .  If  not,  then  the
circuit will simply busy wait instead of blocking, repeatedly
and  unnecessarily  executing  communication  actions  on  S ,
wasting a lot of energy along the way.

∗[[A⸰∨B⸰]; S;(A⸰ ∥ B⸰);S]

∗[[A⸰∨B⸰]; S;(A⸰; B⸰);S]

To see the busy-wait versions, look no further than back to
the  sequential  and  parallel  composition  circuits  in  Fig.  9.
However, implementing the extra check for [A⸰∨B⸰]  which
makes it blocking requires adding only two extra transistors,
as highlighted in Fig. 12, to what would otherwise just be an

inverter. The transistor network that drives Sr  in Fig. 12 and
Fig.  14,  is  ultimately  a  generalized C-element  with  a  weak
staticizer.  The  cross-coupled  inverters  form  a  latch  whose
value  is  set  by  the  pull-up  and  pull-down  networks  of  the
C-element.  The  weak  backwards  inverter  is  a  staticizer,
designed to  keep the  previous  state  of  the  C-element  when
both the pull-up and pull-down networks are off.

Fig. 12. Circuit diagrams for proposed greedy arbiter (left) and bundling
merge (right).

The state transition diagram of this interface between C ,
S , uA  and uB  is shown in Fig. 13. Again, the extra states
introduced  in  the  buffered  arbiter  implementations  are
highlighted in red.

Fig. 13. State transition diagram of the proposed interface for the bundling
merge and greedy arbiter. The Buffered Arbiter approaches add the

highlighted states.

And with some peephole circuit optimization, we get the
circuits presented in Fig. 14. Notice that no single gate in the
greedy arbiter has a transistor stack length that is dependant
upon the number of inputs. That means that one could scale it
to an arbitrary number of inputs without ever introducing any
gate trees. For the bundling merge, the generalized C-element
driving Sr  does grow with the number of inputs. However
for the most part, that can be implemented as a tree of standard
C-elements. The final C-element at the root of the tree would
need  to  include  the  highlighted  transistors  attached  to  its
ground node.

Furthermore, if the gates driving c ,  w ,  and Sr  in [1]
were merged together, the inverter on Sa  would no longer be
necessary.  With  the  inverter  removed,  we  would  have
successfully re-derived the bundling merge presented in this
work.  This  similarity  shows  the  power  of  our  systematic
approach to derive circuits of similar quality to carefully hand-
crafted circuits in the literature.

Fig. 14. Optimized circuit diagrams for the ideal-arbiter version of the
proposed greedy arbiter (left) and bundling merge (right).



More generally, we can implement any arbiter of the form
∗[[wait expr];S;(compose expr);S]  using  the
same  basic  template.  For  example,  a  one-writer  two-reader
lock where the writer gets priority is ∗[[W⸰∨R0⸰∨R1⸰];S;
(W⸰;(R0⸰∥R1⸰));S] .  Alternatively,  we  could  give  the
readers  priority  by  modifying  the  composition  expression:
∗[[W⸰∨R0⸰∨R1⸰];S;((R0⸰∥R1⸰);W⸰);S] .  Or  we  could
require both readers to make a request before either of them
get  the  grant  by  modifying  the  wait  expression:
∗[[W⸰∨R0⸰∧R1⸰];S;(W⸰;(R0⸰∥R1⸰));S] .  This  last
example  demonstrates  the  power  of  this  system to  produce
solutions  to  arbitration  problems  that  cannot  be  otherwise
constructed with the circuits found in the literature. In general,
these types of solutions come from wait expressions that are
not simply an OR across all input request signals.

When optimizing the buffered arbiter  design in Fig.  15,
take note that we do not have to wait for uA  to go low before
passing the grant off to the next request. This is because vA↾
requires that Ar  is lowered thereby handing the grant back to
us. We just need to make sure that uA  and uB  complete their
transition before we complete the handshake. This allows us to
merge  the  check  for  uA⇂  and  uB⇂  into  the  C-element
driving Sr  making it a symmetric generalized C-element.

Fig. 15. Optimized circuit diagrams for the buffered-arbiter version of the
proposed greedy arbiter (left) and bundling merge (right).

The process of extending this circuit to many inputs is not
altogether obvious. There will still be a C-element tree driving
Sr  similar to the ideal arbiter version, with the special root
node  that  checks  the  upgoing  transitions  of  uA ,  uB ,  etc.
However, the downgoing transitions of those signals must be
checked at the leaves of the tree. This prevents the transistor
stacks at the root node from growing too long.

Aside from the bundling merge circuit in [1], the circuits
available in the literature rely upon hierarchical composition to
scale to many inputs. This connects the child-grant channel A
or B  of one arbitration circuit to the parent-grant channel S
of another. Furthermore according to the authors, scaling the
flat composition in [1] above 3 inputs becomes dangerous due
to their  timing assumptions,  and the standard cell  library is
unlikely to have the necessary gates for w  in Fig. 5.

VI. EVALUATION

We developed and evaluated all of these circuits using a set
of in-house tools, a version of which is described in [22] and
publicly available at [20]. We also verified correctness for all
of  the  elements  described  in  this  paper  with  a  brute  force
switch-level  simulation  which  identifies  instability,
interference, and deadlock across all states. No environmental
assumptions were required since this was verified using simple
sources  and  sinks  on  the  input  and  output  channels.  We

automatically  translated  these  specifications  into  SPICE
netlists and verified their analog properties using Synopsys's
combined simulator with VCS, a Verilog simulator, to simulate
the  testbench  and  HSIM,  a  fast  SPICE simulator,  to  report
power and performance metrics.

To evaluate  the  energy  per  operation  and  throughput  of
these circuits, we used a 1V 28nm process and protected each
of the digitally driven channels with a FIFO of three WCHB
[30] buffers isolated to a different power source to get more
accurate results. All of the circuits are sized minimally with a
pn-ratio of 2 , and we use weak feedback staticizers for all of
the C-elements  in  our  designs.  Circuitry necessary for  reset
was  not  included  in  any  of  the  above  descriptions.  The
performance values for the cited work is determined using the
same method.

Fig. 11 shows the state transition diagram for the maybe
execute element, covering all combinations of possible signal
transitions under any possible timing. The figure was derived
directly from the circuit, demonstrating that the maybe execute
element has no switching hazards on any of the digital gates
under any possible timing. Furthermore, the handshake on A
always waits for the parent grant from S , and the parent grant
is not returned until the handshake on A  has completed. This
guarantees that child grants remain mutually exclusive.

The  circuit  family  we  use  guarantees  that  if  two
components are independently verified to be robust under all
possible delay scenarios, and they only interact through delay
insensitive handshake protocols, then their composition is also
robust. Therefore, the compositions in Fig. 9 maintain timing
robustness characteristics.

Finally,  the  state  transition  diagram  in  Fig.  13  was
similarly derived, demonstrating that the bundling merge and
greedy arbiter interface has no switching hazards on any of the
digital  gates  under  any  possible  timing.  Specifically,  all
upgoing transitions on uA  and uB  must happen after Ce⇂
and all downgoing transitions must happen after Ce↾ , keeping
the gate driving Sr  stable.

Therefore,  our  designs  suffer  from  none  of  the  subtle
timing  issues  we  highlighted  in  Section  3.  Meanwhile,  our
designs  expose  a  more  general  strategy  for  composing
arbitrary  non-deterministic  selection  expressions  and  show
good  performance  with  reasonable  energy  requirements.
Furthermore,  our designs only require 2 gates beyond those
typically  found  in  commercial  standard-cell  libraries,  the
arbiter and the C-element executing the wait expression. These
two cells can be easily implemented using standard techniques
or automated layout [29].

In a real system, arbitration circuits are likely to be few
and far between, so any enhancements demonstrated by our
circuits  are  likely  to  have  little  to  no  effect  on  the  system
performance. Therefore, the goal of our analysis is simply to
ensure  that  these  circuits  do  not  end  up  bottlenecking  the
system performance beyond what is already in the literature.
Any performance enhancements demonstrated by our circuits
are  not  generally  a  result  of  the  systematic  strategy  we
developed,  but  are  instead  a  result  of  the  peephole
optimizations that come after. To be fair, it is surprising that
circuits which more strictly implement the QDI delay model



can demonstrate any performance enhancement at all.

For  the  bundling  merge  A∥B ,  our  buffered  arbiter
approach,  with  68  transistors,  operates  5%  faster  and
consumes 4% less energy per operation than previous work [1]
with  78  transistors.  Our  ideal  arbiter  version,  with  69
transistors, is slightly worse than the normal arbiter design in
every metric because it  moves one of the acknowledgement
checks earlier in the handshake.

Fig.  16  shows  the  performance  and  Fig.  17  shows  the
energy of each bundling merge design as they scale to many
inputs. The high activity (top) plot assumes that all inputs are
making requests and the grants are servicing those requests at
max possible throughput while the low activity (bottom) plot
assumes  that  only  one  input  is  making  requests  while  the
others are inactive.

Fig. 16. High activity (top) and low activity (bottom) performance metrics for
the bundling merge A∥B  as it scales to many inputs.

When  scaling  the  designs  beyond  2  inputs  with  high
activity, the flat ideal arbiter design is quickly superior in both
frequency  and  energy.  This  is  primarily  because  all  of  the
nodes in the tree composition are unbuffered, so a request has
to be passed all the way up and the grant back down the tree
before the requesting process can be serviced. This incurs a
significant delay that the flat compositions easily avoid.

Fig. 17. High activity (top) and low activity (bottom) energy metrics for the
bundling merge A∥B  as it scales to many inputs.

At  lower  activity,  the  tree  compositions  will  start  to
perform better because they have to check fewer nodes. More
specifically, if 1  out of N  nodes are making requests, the flat
composition has to check all N  while the tree compositions

only have to check O(log2(N))  nodes. In the low activity
energy  plots  in  Fig.  17,  this  is  apparent  because  the  tree
designs  use  much  less  energy  overall.  However,  the  low
activity  frequency  plots  in  Fig.  16  show that  the  flat  ideal
arbiter design remains superior to the tree designs. In a real
system, if access to a shared resource is a bottleneck, and a
bundling  merge  is  used  to  arbitrate,  then  the  performance
gains from the flat ideal bundling merge can ultimately lead to
an improvement in overall system performance.

For the greedy arbiter A; B , our buffered arbiter version,
with  59  transistors,  and  our  ideal  arbiter  version,  with  65
transistors, both operate slower and consume more energy than
[3] with 48 transistors and [2] with 35 transistors. This is to be
expected  since  [3]  and  [2]  both  made  significant  timing
assumptions, sacrificing reliability in order to fit their power
and throughput budget.

Fig. 18. High activity (top) and low activity (bottom) performance metrics for
the greedy arbiter A;B  as it scales to many inputs.

Fig.  18  shows  the  performance  and  Fig.  19  shows  the
energy of each greedy arbiter  design as they scale to many
inputs.  Again,  the  high  activity  (top)  plot  assumes  that  all
inputs are making requests and the grants are servicing those
requests  at  max  possible  throughput  while  the  low activity
(bottom) plot assumes that only one input is making requests
while the others are inactive.

Fig. 19. High activity (top) and low activity (bottom) energy metrics for the
greedy arbiter A;B  as it scales to many inputs.

As  the  greedy  arbiter  is  scaled  beyond  two inputs  with
high  activity,  the  flat  ideal  arbiter  design  is  still  clearly
superior  to  the  tree  designs  in  both  frequency  and  energy.



However,  the  effect  of  lower  activity  is  more  significant.
While the bundling merges check all N  inputs in parallel, the
greedy arbiter does so one at a time. This means that the tree
composition  will  get  a  significant  advantage  to  throughput
beyond the flat compositions at lower activity levels. It is not
possible to include [2] in this comparison because it deadlocks
all but one input in this scenario.

VII. CONCLUSION

In this paper, we presented a robust implementation for a
non-deterministic channel action and showed how it could be
easily  composed  to  generate  robust  implementations  for
bundling  merges  and  greedy  arbiters  along  with  any  other
desired locking mechanism. Along the way, we elaborated on
the difference between the buffered arbiter  and ideal  arbiter
models  and  how  those  differences  affect  their  respective
circuit implementations. Finally, we evaluated these designs,
showing  better  performing  bundling  merge  and  a  similarly
performing greedy arbiter.

Overall,  the  bundling  arbiter  and  greedy  arbiter  are
different problems. [2] and [3] simply present circuit diagrams
for greedy arbiters rather than an approach that could be used
to design a bundling merge as well. This is also the case for
[1], where a bundling merge circuit is presented rather than an
approach that could also be used to design a greedy arbiter.
This paper is the first to present a unified approach to both
problems.

APPENDIX

A. CHP Notation
Communicating Hardware Processes (CHP) is a hardware

description  language  used  to  describe  clockless  circuits
derived  from  C.A.R.  Hoare's  Communicating  Sequential
Processes  (CSP)  [15].  A  full  description  of  CHP  and  its
semantics  can  be  found  in  [27].  Below  is  an  informal
description of that notation listed top to bottom in descending
precedence.  For  a  complete  discussion  of  the  interaction
between  the  handshake  expansions  of  channel  actions  like
send and receive and the composition operators, see [18].

Dataless vs Datafull Dataless expressions operate on node
voltages  while  Datafull  operate  on  delay  insensitive
encodings.  Mixed expressions implicitly  cast  the  datafull  to
dataless  using  the  encoding's  validity.  Specifically,  for  a
datafull expression e  its positive sense e  is cast to a validity
check  while  its  negative  sense  ¬e  is  cast  to  a  neutrality
check. null  is defined to be a neutral state of an encoding.

A Channel X  consists  of  a  request Xr  and  either  an
acknowledge Xa  or enable Xe . The acknowledge and enable
serve the same purpose, but have inverted sense. With these
signals, a channel implements a network protocol to transmit
data from one QDI process to another.

Skip skip  does  nothing  and  continues  to  the  next
command.
Dataless Assignment n↾  sets the voltage of the node n
to Vdd  and n⇂  sets it to GND .
Assignment v := E  waits until the datafull expression,
E , is valid, then assigns that value to the variable, v .
Send X!E  waits  until  the  datafull  expression  E  has  a

valid value, then sends that value across the channel X .
Ultimately,  a  send  is  expanded  into  a  handshake  on  its
underlying  signals.  The  standard  four  phase  send  on
channel  X  is  Xr  := E; [Xa];  Xr  := null;
[¬Xa]  for  an  acknowledge  channel  or  Xr  :=  E;
[¬Xe]; Xr := null; [Xe]  for an enable channel.
Receive X?v  waits  until  there  is  a  valid  value  on  the
channel  X ,  then  assigns  that  value  to  the  variable  v .
Ultimately, a receive is expanded into a handshake on its
underlying  signals.  The  standard  four  phase  receive  on
channel X  is v := Xr; Xa↾; [¬Xr]; Xa⇂  for  an
acknowledge  channel  or  v := Xr; Xe⇂; [¬Xr];
Xe↾  for an enable channel.
Dataless Channel Action If X  is a dataless channel, then a
send  with  an  acknowledge  channel  is  indistinguishable
from a receive with an enable channel and a send with an
enable channel is indistinguishable from a receive with an
acknowledge  channel.  Therefore,  we  can  simplify  the
syntax for the dataless send X!  or receive X?  to X .
Probe X?  is used determine if the channel is ready for a
receive action, returning the value waiting on the request
Xr  without executing the receive. X!  is used to determine
if the channel is  ready for a send action, expanding into
either ¬Xa  given an acknowledge or Xe  given an enable.
For dataless channels, the syntax is simplified to X .
Sequential Composition S; T  executes the programs S
followed by T .
Parallel Composition S ∥ T  executes the programs S
and T  in any order.
Deterministic  Selection [G1  →  S1▯…▯Gn →  Sn]
where Gi , called a guard, is a dataless expression and Si
is a program. The selection waits until one of the guards,
Gi ,  evaluates  to  Vdd ,  then  executes  the  corresponding
program,  Si .  The  guards  must  be  stable  and  mutually
exclusive.  The  notation  [G]  is  shorthand  for  [G →
skip] .
Non-Deterministic Selection [G1→S1|…:Gn→Sn]  is  the
same as Deterministic Selection except that the guards do
not have to be stable or mutually exclusive. If two or more
evaluate  to  Vdd  simultaneously,  then  one  is  picked
arbitrarily (not necessarily random). In a circuit, this choice
is  implemented  by  a  collection  of  arbiters  and
synchronizers.  As  discussed  in  Section  2,  when  two  or
more guards evaluate to Vdd  simultaneously, it can cause
a  metastable  state  in  the  arbiter  or  synchronizer.  This
metastable state then resolves non-deterministically, giving
the grant to one of the branches of the selection statement.
Therefore, the digital model of this selection statement is
also non-deterministic in such a condition.
Repetition ∗[G1 → S1▯…▯Gn → Sn] is similar to the
selection statements. However, the action is repeated until
no  guard  evaluates  to  Vdd .  ∗[S]  is  shorthand  for
∗[Vdd → S] .
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